CONSUMER CONFIDENCE REPORT Report Covers Calendar Year: January 1 – December 31, 2011 Este informe contiene informactión muy importante sobre el aqua usted bebe. Tradúscalo ó hable con alguien que lo entienda bien #### I. Public Water System (PWS) Information | PWS Name: | | | Hydro Resources Tusayan | | | | | | |--|------------------|-------|-------------------------|-------------|-------------------------|--|--|--| | PWS ID# | | | AZ04- 03-312 | | | | | | | Owner / Opera | itor Name: | | John Rueter | John Rueter | | | | | | Telephone # | 928-310-435
0 | Fax # | 928-638-333
6 | E-mail | rueter.jw@g
mail.com | | | | | We want our valued customers to be informed about their water quality. If you would like to learn more about public participation or to attend any of our regularly scheduled meetings, please contact | | | | | | | | | #### II. Drinking Water Sources The sources of drinking water (both tap and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. Our water source(s): Groundwater, from two deep wells in Tusavan #### **III. Consecutive Connection Sources** A public water system that receives some or all of its finished water from one or more wholesale systems by means of a direct connection or through the distribution system of one or more consecutive systems. Systems that purchase water from another system report regulated contaminants detected from the source water supply in a separate table. Hydro Resources Tusayan did not receive any water from other sources or systems in 2011. #### IV. Drinking Water Contaminants <u>Microbial contaminants</u>, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. <u>Inorganic contaminants</u>, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. <u>Pesticides and herbicides</u> that may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses. <u>Organic chemical contaminants</u>, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems. <u>Radioactive contaminants</u>, that can be naturally occurring or be the result of oil and gas production and mining activities. #### V. Vulnerable Population Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV-AIDS or other immune system disorders, some elderly, and infants can be particularly at risk of infections. These people should seek advice about drinking water from their health care providers. For more information about contaminants and potential health effects, or to receive a copy of the U.S. Environmental Protection Agency (EPA) and the U.S. Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and microbiological contaminants call the EPA *Safe Drinking Water Hotline* at 1-800-426-4791. #### **VI. Source Water Assessment** If the public water system received a Source Water Assessment (SWA), include a brief summary of the susceptibility as summarized in the SWA report. Further source water assessment documentation can be obtained by contacting ADEQ, 602-771-4641. #### VII. Definitions AL = Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements. MCL = Maximum Contaminant Level - The "Maximum Allowed" is the highest level of a contaminant that is allowed in drinking water. MCLG = Maximum Contaminant Level Goal - The "Goal" is the level of a contaminant in drinking water below which there is no known or expected risk to health. MFL = Million fibers per liter. MRDL = Maximum Residual Disinfectant Level. MRDLG = Maximum Residual Disinfectant Level Goal. MREM = Millirems per year – a measure of radiation absorbed by the body. NA = Not Applicable, sampling was not completed by regulation or was not required. NTU = Nephelometric Turbidity Units, a measure of water clarity. PCi/L = Picocuries per liter - picocuries per liter is a measure of the radioactivity in water. $ppm \times 1000 = ppb$ ppb x 1000 = ppt ppt x 1000 = ppq <u>PPM = Parts per million</u> or Milligrams per liter (mg/L). $\overline{PPB} = \overline{Parts} \text{ per billion or Micrograms per liter } (\mu g/L).$ <u>PPT = Parts per trillion</u> or Nanograms per liter. PPQ = Parts per quadrillion or Picograms per liter. <u>TT = Treatment Technique</u> - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water. #### VIII. Health Effects Language **Nitrate** in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods-of-time because of rainfall or agricultural activity. If you are caring for an infant, and detected nitrate levels are above 5 ppm, you should ask advice from your health care provider. If arsenic is less than or equal to the MCL, your drinking water meets EPA's standards. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. Infants and young children are typically more vulnerable to **lead** in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested. Flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the EPA *Safe Drinking Water Hotline* at 1-800-426-4791. #### IX. Water Quality Data <=below detection point or non-detect Microbiological Violation ### Y or NNumber of Samples Present <u>OR</u> Highest Level DetectedAbsent (A) or Present (P) Range of All Samples (L-H)MCLMCLGSample Month & YearLikely Source of ContaminationTotal Coliform Bacteria | (System takes ≥ 40 monthly samples) 5% of monthly samples are positive; (System takes ≤ 40 monthly samples) 1 positive monthly sample | N | 0 | A | 0 | 0 | Jan-Dec
2012 | Naturally
Present in
Environment | |---|-----|---|---|----|-----|-----------------|--| | Fecal coliform
and E. Coli
(TC Rule) | n/a | 0 | 0 | 0 | 0 | n/a | Human and
animal fecal
waste | | Fecal
Indicators
(E. coli,
enterococci or
coliphage)
(GW Rule) | n/a | 0 | 0 | TT | n/a | n/a | Human and
animal fecal
waste | | Total Organic
Carbon (ppm) | n/a | 0 | 0 | TT | n/a | n/a | Naturally present in the environment | | Turbidity (NTU), surface n/a | 0 | 0 | TT | n/a | n/a | Soil Runoff | |-------------------------------|---|---|----|-----|-----|-------------| | (NTU), surface n/a water only | 0 | 0 | TT | n/a | n/a | | #### DisinfectantsViolation Y or NRunning Annual Average (RAA)Range of All Samples (L-H)MCLMCLGSample Month & YearLikely Source of **Contamination**Chloramines (ppm)n/an/an/aMRDL = 4MRDLG = 4n/aWater additive used to control microbesChlorine (ppm) $N0.0170.1 - 0.33 \\ \text{MRDL} = 4 \\ \text{MRDLG} = 42011 \\ \text{Water additive used to control microbes} \\ \text{Chloride dioxide (ppb)} \\ n/an/an/a\\ \text{MRDL} = 1000 \\ \text{MR$ 800MRDLG = 800n/aWater additive used to control microbes Disinfection By-ProductsViolation Y or NRunning Annual Average (RAA) OR Highest Level DetectedRange of All Samples (L-H)MCLMCLGSample Month & YearLikely Source of ContaminationHaloacetic Acids (ppb) (HAA5) | | WOILLI | | ar Entery Co | uioc | or contai | iiiiiuuiioi | manouc | ctic ricius | (PPO) | (111111111) | | | |-------------------------------------|--------|----|--------------|------|-----------|-------------|--------|-------------|-------|-------------|-----|--| | N | <.001 | | <.001 | | 60 | | n/a | | 8-20 |)11 | dri | product of
inking water
sinfection | | Total Trihalometh anes (ppb) (TTHM) | N | <. | 001 | <.00 | 01 | 80 | | n/a | | 8-2011 | | Byproduct of drinking water disinfection | | Bromate (ppb) | n/a | 0 | | 0 | | 10 | | 0 | | n/a | | Byproduct of
drinking water
disinfection | Chlorite (ppm)n/a0010.8n/aByproduct of drinking water disinfectionLead & CopperViolation Y or N90th Percentile AND Number of Samples Over the ALRange of All Samples (L-H)ALALGSample Month & YearLikely Source of ContaminationCopper (ppm) | N | 90 th Percentile = .33 | .0357 | AL = 1.3 | ALG = 1.3 | 10-2011 | Corrosion of
household
plumbing
systems; erosion
of natural
deposits | |---|-----------------------------------|-------|----------|-----------|---------|---| $Lead~(ppb)N90^{th}~Percentile~=.005~.001-.159 AL~=15010-2011 Corrosion~of~household~plumbing~systems;~erosion~of~natural~deposits~ \textbf{RadionuclidesViolation}$ Y or NRunning Annual Average (RAA) OR Highest Level DetectedRange of All Samples (L-H)MCLMCLGSample Month & YearLikely Source of ContaminationBeta / photon emitters (mrem/yr) | | | | | | | | P | (| | | |---|-----|-----|-----|---|----|---|---|-----|---------|--| | N | n/a | n/a | | 4 | | 0 | | n/a | | Decay of natural
and man-made
deposits | | Alpha emitters (pCi/L) | N | 4.1 | 4.1 | | 15 | | 0 | | 12-2010 | Erosion of natural deposits | | Combined
Radium 226
& 228 (pCi/L) | N | 0.4 | 0.4 | | 5 | | 0 | | 12-2010 | Erosion of
natural
deposits | ${\rm Uranium}\;({\rm pCi/L})Nn/an/a300n/a$ Erosion of natural deposits # Inorganic Chemicals (IOC) Violation Y or NRunning Annual Average (RAA) <u>OR</u> Highest Level DetectedRange of All Samples (L-H)MCLMCLGSample Month & YearLikely Source of ContaminationAntimony (ppb) | n/a | 0 | 0 | 6 | | 6 | | Wil
201 | l sample in | Discharge from
petroleum
refineries; fire
retardants;
ceramics,
electronics and
solder | |---------------|---|----|----|----|---|---|------------|-------------|---| | Arsenic (ppb) | N | <3 | <3 | 10 | | 0 | | 11-2007 | Erosion of
natural
deposits,
runoff from
orchards,
runoff from
glass and
electronics
production
wastes | | Asbestos
(MFL) | N | <0.2 | <0.2 | 7 | 7 | 5-2004 | Decay of
asbestos
cement water
mains;
Erosion of
natural
deposits | |-------------------|---|-------|-----------------|-----|-----|---------|---| | Barium
(ppm) | N | 0.274 | 0.251-0.2
97 | 2 | 2 | 11-2007 | Discharge of
drilling
wastes;
discharge from
metal
refineries;
Erosion of
natural
deposits | | Beryllium (ppb) | N | 0.5 | 0.5 | 4 | 4 | 11-2007 | Discharge
from metal
refineries and
coal-burning
factories;
discharge from
electrical,
aerospace, and
defense
industries | | Cadmium (ppb) | N | 2 | 2 | 5 | 5 | 11-2007 | Corrosion of
galvanized
pipes; natural
deposits;
metal
refineries;
runoff from
waste batteries
and paints | | Chromium (ppb) | N | <5 | <5 | 100 | 100 | 11-2007 | Discharge
from steel and
pulp mills;
Erosion of
natural
deposits | | Cyanide (ppb) | N | <10 | <10 | 200 | 200 | 11-2007 | Discharge
from steel/
metal factories;
Discharge
from plastic
and fertilizer
factories | | Fluoride (ppm) | N | <0.50 | <0.50 | 4 | 4 | 11-2007 | Erosion of
natural
deposits;
water additive
which
promotes
strong teeth;
discharge from
fertilizer and
aluminum
factories | | Mercury
(ppb) | N | <0.2 | <0.2 | 2 | 2 | 11-2007 | Erosion of
natural
deposits;
Discharge
from refineries
and factories;
Runoff from
landfills and
cropland. | | Nitrate (ppm) | N | 0.531 | 0.62-1.0 | 10 | 10 | 10-2011 | Runoff from
fertilizer use;
leaching from
septic tanks,
sewage;
erosion of
natural
deposits | | Nitrite (ppm) | N | <0.20 | <0.20 | 1 | 1 | 11-2007 | Runoff from
fertilizer
use; leaching
from septic
tanks,
sewage;
erosion of
natural
deposits | |-------------------|---|-------|---------|----|-----|---------|---| | Selenium
(ppb) | N | 4.7 | 4.1-5.3 | 50 | 50 | 11-2007 | Discharge
from
petroleum
and metal
refineries;
erosion of
natural
deposits;
discharge
from mines | | Thallium
(ppb) | N | <0.5 | <0.5 | 2 | 0.5 | 11-2007 | Leaching
from ore-
processing
sites;
discharge
from
electronics,
glass, and
drug
factories | Synthetic Organic Chemicals (SOC)Violation Y or NRunning Annual Average (RAA) $\underline{\text{OR}}$ Highest Level DetectedRange of All Samples (L-H)MCLMCLGSample Month & YearLikely Source of Contamination2,4-D (ppb)N<0.1<0.170705-2004Runoff from herbicide used on row crops2,4,5-TP (Silvex) (ppb) | N | <0.2 | <0.2 | | 50 | | 50 | | 5-2 | 004 | Residue of banned herbicide | |------------------------------------|------|---------|------|------|-----|----|----|-----|--------|---| | Acrylamide | n/a | - | - | | TT | | 0 | | - | Added to
water during
sewage /
wastewater
treatment | | Alachlor (ppb) | N | <0.05 | <0.0 | 05 | 2 | | 0 | | 7-2004 | Runoff from
herbicide
used on row
crops | | Atrazine (ppb) | N | <0.05 | <0.0 | 05 | 3 | | 3 | | 5-2004 | Runoff from
herbicide
used on row
crops | | Benzo (a)
pyrene
(PAH) (ppt) | N | <2 | <2 | | 200 | | 0 | | 5-2004 | Leaching
from linings
of water
storage tanks
and
distribution
lines | | Carbofuran (ppb) | N | <0.0009 | <0.0 | 0009 | 40 | | 40 | | 5-2004 | Leaching of
soil fumigant
used on rice
and alfalfa | | Chlordane (ppb) | n/a | <0.1 | <0. | 1 | 2 | | 0 | | 7-2004 | Residue of banned termiticide | | Dalapon
(ppb) | N | <1 | <1 | 200 | 200 | 5-2004 | Runoff from
herbicide
used on
rights of way | |---|-----|------|------|-----|-----|---------|---| | Di (2-
ethylhexyl)
adipate
(ppb) | N | <0.6 | <0.6 | 400 | 400 | 52004 | Discharge
from
chemical
factories | | Di (2-
ethylhexyl)
phthalate
(ppb) | N | <0.6 | <0.6 | 6 | 0 | 5-2004 | Discharge
from rubber
and
chemical
factories | | Dibromochlo
ropropane
(ppt) | N | <10 | <10 | 200 | 0 | 62012 | Runoff/
leaching
from soil
fumigant
used on
soybeans,
cotton,
pineapples,
and orchards | | Dinoseb (ppb) | N | <0.2 | <0.2 | 7 | 7 | 5-2004 | Runoff from
herbicide
used on
soybeans
and
vegetables | | Diquat (ppb) | N | <0.4 | <0.4 | 20 | 20 | 5-2004 | Runoff from
herbicide
use | | Dioxin
[2,3,7,8-
TCDD]
(ppq) | N | <5 | <5 | 30 | 0 | 11-2006 | Emissions
from waste
incineration
and other
combustion;
discharge
from
chemical
factories | | Endothall (ppb) | N | <5 | <5 | 100 | 100 | 5-2004 | Runoff from
herbicide
use | | Endrin (ppb) | N | <10 | <10 | 2 | 2 | 7-2004 | Residue of banned insecticide | | Epichlorohy
drin | n/a | - | - | TT | 0 | - | Discharge
from
industrial
chemical
factories; an
impurity of
some water
treatment
chemicals | | Ethylene
dibromide
(ppt) | N | <10 | <10 | 50 | 0 | 6-2012 | Discharge
from
petroleum
refineries | | Glyphosate (ppb) | N | <6 | <6 | 700 | 700 | 9-1998 | Runoff from
herbicide
use | | Heptachlor (ppt) | N | <10 | <10 | 400 | 0 | 7-2004 | Residue of banned temiticide | | Heptachlor
epoxide
(ppt) | N | <1 | <1 | 200 | 0 | 7-2004 | Breakdown
of
heptachlor | | Hexachlorob
enzene
(ppb) | N | <0.05 | <0.05 | 1 | 0 | 5-2004 | Discharge
from metal
refineries
and
agricultural
chemical
factories | |---|---|--------|-------|-----|-----|--------|--| | Hexachloroc
yclo
pentadiene
(ppb) | N | <0.05 | <0.05 | 50 | 50 | 5-2004 | Discharge
from
chemical
factories | | Lindane
(ppt) | N | <10 | <10 | 200 | 200 | 7-2004 | Runoff/
leaching
from
insecticide
used on
cattle,
lumber,
gardens | | Methoxychlo r (ppb) | N | <0.5 | <0.5 | 40 | 40 | 7-2004 | Runoff/
leaching
from
insecticide
used on
fruits,
vegetables,
alfalfa,
livestock | | Oxamyl
[Vydate]
(ppb) | N | <0.5 | <0.5 | 200 | 200 | 5-2004 | Runoff/
leaching
from
insecticide
used on
apples,
potatoes and
tomatoes | | PCBs
[Polychlorin
ated
biphenyls]
(ppt) | N | <10 | <0.10 | 500 | 0 | 9-1998 | Runoff from
landfills;
discharge of
waste
chemicals | | Pentachlorop
henol (ppb) | N | <0.04 | <0.04 | 1 | 0 | 5-2004 | Discharge
from wood
preserving
factories | | Picloram (ppb) | N | <1 | <1 | 500 | 500 | 5-2004 | Herbicide runoff | | Simazine (ppb) | N | < 0.05 | <0.05 | 4 | 4 | 5-2004 | Herbicide runoff | | Toxaphene (ppb) | N | <0.01 | <0.01 | 3 | 0 | 9-1998 | Runoff/
leaching
from
insecticide
used on
cotton and
cattle | Volatile Organic Chemicals (VOC)Violation Y or NRunning Annual Average (RAA) \underline{OR} Highest Level DetectedRange of All Samples (L-H)MCLMCLGSample Month & YearLikely Source of ContaminationBenzene (ppb) N<0.50<0.50501-2011Discharge from factories; leaching from gas storage tanks and landfillsCarbon tetrachloride (ppb) | N | <0.50 | <0.50 | 5 | 0 | 1-2011 | Discharge
from chemical
plants and
other industrial
activities | |---|-------|-------|---|---|--------|--| |---|-------|-------|---|---|--------|--| | Chlorobenze
ne (ppb) | N | <0.50 | <0.50 | 100 | 100 | 1-2011 | Discharge
from
chemical
and
agricultural
chemical
factories | |--|---|-------|-------|-----|-----|--------|--| | o-
Dichloroben
zene (ppb) | N | <0.50 | <0.50 | 600 | 600 | 1-2011 | Discharge
from
industrial
chemical
factories | | p-
Dichloroben
zene (ppb) | N | <0.50 | <0.50 | 75 | 75 | 1-2011 | Discharge
from
industrial
chemical
factories | | 1,2-
Dichloroetha
ne (ppb) | N | <0.50 | <0.50 | 5 | 0 | 1-2011 | Discharge
from
industrial
chemical
factories | | 1,1-
Dichloroethy
lene (ppb) | N | <0.50 | <0.50 | 7 | 7 | 1-2011 | Discharge
from
industrial
chemical
factories | | cis-1,2-
Dichloroethy
lene (ppb) | N | <0.50 | <0.50 | 70 | 70 | 1-2011 | Discharge
from
industrial
chemical
factories | | trans-1,2-
Dichloroethy
lene (ppb) | N | <0.50 | <0.50 | 100 | 100 | 1-2011 | Discharge
from
industrial
chemical
factories | | Dichloromet
hane (ppb) | N | <0.50 | <0.50 | 5 | 0 | 1-2011 | Discharge
from
pharmaceuti
cal and
chemical
factories | | 1,2-
Dichloropro
pane (ppb) | N | <0.50 | <0.50 | 5 | 0 | 1-2011 | Discharge
from
industrial
chemical
factories | | Ethylbenzen
e (ppb) | N | <0.50 | <0.50 | 700 | 700 | 1-2011 | Discharge
from
petroleum
refineries | | Styrene
(ppb) | N | <0.50 | <0.50 | 100 | 100 | 1-2011 | Discharge
from rubber
and plastic
factories;
leaching
from
landfills | | Tetrachloroe
thylene
(ppb) | N | <0.50 | <0.50 | 5 | 0 | 1-2011 | Discharge
from
factories and
dry cleaners | | 1,2,4-
Trichloroben
zene (ppb) | N | <0.50 | <0.50 | 70 | 70 | 1-2011 | Discharge
from textile-
finishing
factories | | 1,1,1-
Trichloroeth
ane (ppb) | N | <0.50 | <0.50 | 200 | 200 | 1-2011 | Discharge
from metal
degreasing
sites and
other
factories | |-------------------------------------|---|---------|---------|-----|-----|--------|---| | 1,1,2-
Trichloroeth
ane (ppb) | N | <0.50 | <0.50 | 5 | 3 | 1-2011 | Discharge
from
industrial
chemical
factories | | Trichloroeth ylene (ppb) | N | <0.50 | <0.50 | 5 | 0 | 1-2011 | Discharge
from metal
degreasing
sites and
other
factories | | Toluene (ppm) | N | <0.50 | <0.50 | 1 | 1 | 1-2011 | Discharge
from
petroleum
factories | | Vinyl
Chloride
(ppb) | N | <.0.30 | <0.30 | 2 | 0 | 1-2011 | Leaching
from PVC
piping;
discharge
from
chemical
factories | | Xylenes (ppm) | N | <0.0010 | <0.0010 | 10 | 10 | 1-2011 | Discharge
from
petroleum or
chemical
factories | X. Cryptosporidium Monitoring (surface water systems only) n/a. We are not required to sample for cryptosporidium because we are a groundwater only system. | We detected Cryptosporidium in the finished water or source water | . We detected Cryptosporidium in | of our | |---|----------------------------------|--------| | samples tested. | | | We have to provide additional treatment if Cryptosporidium is found at greater than 0.075 oocyst per liter. We believe it is important for you to know that Cryptosporidium may cause serious illness in immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/ AIDS or other immune system disorders. These people should seek advice form their health care providers. XI. Stage 2 Disinfectants and Disinfection By-Products Rule Stage 2 DBP Rule required some systems to complete an Initial Distribution System Evaluation (IDSE) to characterize DBP levels in their distribution systems and identify locations to monitor DBPs for Stage 2 DBP Rule compliance. The following table summarizes the individual sample results for the IDSE standard monitoring performed in <year> | | | 9. | | |------------------------------------|--------------------|------------------------|------------------------| | Contaminant | Number of Analyses | Minimum Level Detected | Highest Level Detected | | Haloacetic Acids (HAA5) (ppb) | 4 | <0.001 | <0.001 | | Total Trihalomethanes (TTHM) (ppb) | 4 | <0.001 | <0.001 | #### XII. Violations | Type / Description | Compliance Period | Corrective Actions taken by PWS | |--------------------|-------------------|---------------------------------| | No violations 2011 | • | | | | | | | | | | | | | | | | | | An explanation of the violation(s) in the above table, the steps taken to resolve the violation(s) and any required health effects information are required to be included with this report. (Attach copy of Public Notice if available.) ## **PAGE** Consumer Confidence Report Revised March 13, 2012 PAGE 6 of NUMPAGES 7